Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We explore possible advantages of cyclic spectroscopy for observations of pulsars in instances where full cyclic deconvolution is not possible. We compute cyclic merits and full-deconvolution regime boundaries for pulsars observed by NANOGrav and discuss which sources stand to benefit the most from using cyclic spectroscopy when observed with the Green Bank Telescope and DSA-2000 in a given frequency range. We compare data products, namely the wavefield, in both full-deconvolution and partial-deconvolution regimes to demonstrate what can be accomplished with incomplete phase retrieval. Additionally, we show how some phase retrieval can still be achieved in the partial-deconvolution regime and how this allows for additional information in scintillation-based data products, like the dynamic wavefield power, compared to what can be found in traditional dynamic spectra. An examination of dynamic wavefield phase as a function of observing frequency reveals more complete phase retrieval is achieved the closer one gets to the full-deconvolution regime, agreeing with the expectations of cyclic merit. While we demonstrate that fragmentary recovery of the secondary wavefield can be accomplished in the partial-deconvolution regime, we advocate for a synergistic approach with phase retrieval methods like theθ−θtransform, although we also provide discussion about shortcomings of this strategy. Finally, we use the combination of modest cyclic merit and lack of discernible results for PSR J1903+0327 to motivate the creation of an updated “cyclic merit 2.0,” which relies on scintillation bandwidth instead of observing bandwidth.more » « less
-
Abstract Fast radio bursts (FRBs) are millisecond-duration radio transients that serve as unique probes of ionizedextragalactic matter. We report the discovery and localization of two FRBs piercing the Andromeda galaxy (M31) with the realfast transient-detection system at the Very Large Array. These unique sightlines enable constraints on M31’s electron density distribution. We localized FRB 20230930A to a host galaxy at redshiftz= 0.0925 and FRB 20230506C to a host galaxy at redshiftz= 0.3896. After accounting for the dispersion contributions from the Milky Way, the host galaxies, and the intergalactic medium, we estimate M31’s contribution to be 26–239 pc cm−3toward FRB 20230930A and 51–366 pc cm−3toward FRB 20230506C, within the 90% credible interval (CI). By modeling the M31 disk’s contribution, we isolate the halo component and find that M31’s halo contributes 7–169 pc cm−3along FRB 20230930A (90% CI). The inferred values of DMM31,halofrom the FRBs are consistent with predictions from a modified Navarro–Frenk–White profile at the corresponding impact parameter. The cool and warm phase gas is unlikely to account for the DMM31,halounless the ionization fraction is as high as 90%. While limited to two sightlines, these results offer tentative evidence for the existence of a hot halo surrounding M31. We also discuss the potential contribution of other foreground structures, particularly in explaining the DM excess observed in FRB 20230506C. This work demonstrates how FRBs can be used to probe the circumgalactic medium of intervening galaxies.more » « less
-
Abstract Pulsar timing arrays (PTAs) are Galactic-scale gravitational wave (GW) detectors consisting of precisely timed pulsars distributed across the sky. Within the decade, PTAs are expected to detect nanohertz GWs emitted by close-separation supermassive black hole binaries (SMBHBs), thereby opening up the low-frequency end of the GW spectrum for science. Individual SMBHBs which power active galactic nuclei are also promising multi-messenger sources; they may be identified via theoretically predicted electromagnetic (EM) signatures and be followed up by PTAs for GW observations. In this work, we study the detection and parameter estimation prospects of a PTA which targets EM-selected SMBHBs. Adopting a simulated Galactic millisecond pulsar population, we envisage three different pulsar timing campaigns which observe three mock sources at different sky locations. We find that an all-sky PTA which times the best pulsars is an optimal and feasible approach to observe EM-selected SMBHBs and measure their source parameters to high precision (i.e., comparable to or better than conventional EM measurements). We discuss the implications of our findings in the context of future PTA experiments with the planned Deep Synoptic Array-2000 and the multi-messenger studies of SMBHBs such as the well-known binary candidate OJ 287.more » « less
-
Abstract PINTis a pure-Python framework for high-precision pulsar timing developed on top of widely used and well-tested Python libraries, supporting both interactive and programmatic data analysis workflows. We present a new frequentist framework withinPINTto characterize the single-pulsar noise processes present in pulsar timing data sets. This framework enables parameter estimation for both uncorrelated and correlated noise processes, as well as model comparison between different timing and noise models in a computationally inexpensive way. We demonstrate the efficacy of the new framework by applying it to simulated data sets as well as a real data set of PSR B1855+09. We also describe the new features implemented inPINTsince it was first described in the literature.more » « less
-
Abstract Pulsar timing array experiments have recently uncovered evidence for a nanohertz gravitational wave background by precisely timing an ensemble of millisecond pulsars. The next significant milestones for these experiments include characterizing the detected background with greater precision, identifying its source(s), and detecting continuous gravitational waves from individual supermassive black hole binaries. To achieve these objectives, generating accurate and precise times of arrival of pulses from pulsar observations is crucial. Incorrect polarization calibration of the observed pulsar profiles may introduce errors in the measured times of arrival. Further, previous studies have demonstrated that robust polarization calibration of pulsar profiles can reduce noise in the pulsar timing data and improve timing solutions. In this paper, we investigate and compare the impact of different polarization calibration methods on pulsar timing precision using three distinct calibration techniques: the Ideal Feed Assumption (IFA), Measurement Equation Modeling (MEM), and Measurement Equation Template Matching (METM). Three NANOGrav pulsars—PSRs J1643−1224, J1744−1134, and J1909−3744—observed with the 800 MHz and 1.5 GHz receivers at the Green Bank Telescope (GBT) are utilized for our analysis. Our findings reveal that all three calibration methods enhance timing precision compared to scenarios where no polarization calibration is performed. Additionally, among the three calibration methods, the IFA approach generally provides the best results for timing analysis of pulsars observed with the GBT receiver system. We attribute the comparatively poorer performance of the MEM and METM methods to potential instabilities in the reference noise diode coupled to the receiver and temporal variations in the profile of the reference pulsar, respectively.more » « less
-
Abstract Based on the rate of change of its orbital period, PSR J2043+1711 has a substantial peculiar acceleration of 3.5 ± 0.8 mm s–1yr–1, which deviates from the acceleration predicted by equilibrium Milky Way (MW) models at a 4σlevel. The magnitude of the peculiar acceleration is too large to be explained by disequilibrium effects of the MW interacting with orbiting dwarf galaxies (∼1 mm s–1yr–1), and too small to be caused by period variations due to the pulsar being a redback. We identify and examine two plausible causes for the anomalous acceleration: a stellar flyby, and a long-period orbital companion. We identify a main-sequence star in Gaia DR3 and Pan-STARRS DR2 with the correct mass, distance, and on-sky position to potentially explain the observed peculiar acceleration. However, the star and the pulsar system have substantially different proper motions, indicating that they are not gravitationally bound. However, it is possible that this is an unrelated star that just happens to be located near J2043+1711 along our line of sight (chance probability of 1.6%). Therefore, we also constrain possible orbital parameters for a circumbinary companion in a hierarchical triple system with J2043+1711; the changes in the spindown rate of the pulsar are consistent with an outer object that has an orbital period of 60 kyr, a companion mass of 0.3M⊙(indicative of a white dwarf or low-mass star), and a semimajor axis of 1900 au. Continued timing and/or future faint optical observations of J2043+1711 may eventually allow us to differentiate between these scenarios.more » « less
-
Abstract Noise characterization for pulsar-timing applications accounts for interstellar dispersion by assuming a known frequency dependence of the delay it introduces in the times of arrival (TOAs). However, calculations of this delay suffer from misestimations due to other chromatic effects in the observations. The precision in modeling dispersion is dependent on the observed bandwidth. In this work, we calculate the offsets in infinite-frequency TOAs due to misestimations in the modeling of dispersion when using varying bandwidths at the Green Bank Telescope. We use a set of broadband observations of PSR J1643−1224, a pulsar with unusual chromatic timing behavior. We artificially restricted these observations to a narrowband frequency range, then used both the broad- and narrowband data sets to calculate residuals with a timing model that does not account for time variations in the dispersion. By fitting the resulting residuals to a dispersion model and comparing the fits, we quantify the error introduced in the timing parameters due to using a reduced frequency range. Moreover, by calculating the autocovariance function of the parameters, we obtained a characteristic timescale over which the dispersion misestimates are correlated. For PSR J1643−1224, which has one of the highest dispersion measures (DM) in the NANOGrav pulsar timing array, we find that the infinite-frequency TOAs suffer from a systematic offset of ∼22μs due to incomplete frequency sampling, with correlations over about one month. For lower-DM pulsars, the offset is ∼7μs. This error quantification can be used to provide more robust noise modeling in the NANOGrav data, thereby increasing the sensitivity and improving the parameter estimation in gravitational wave searches.more » « less
-
Abstract We test the impact of an evolving supermassive black hole mass scaling relation (MBH–Mbulge) on the predictions for the gravitational-wave background (GWB). The observed GWB amplitude is 2–3 times higher than predicted by astrophysically informed models, which suggests the need to revise the assumptions in those models. We compare a semi-analytic model’s ability to reproduce the observed GWB spectrum with a static versus evolving-amplitudeMBH–Mbulgerelation. We additionally consider the influence of the choice of galaxy stellar mass function (GSMF) on the modeled GWB spectra. Our models are able to reproduce the GWB amplitude with either a large number density of massive galaxies or a positively evolvingMBH–Mbulgeamplitude (i.e., theMBH/Mbulgeratio was higher in the past). If we assume that theMBH–Mbulgeamplitude does not evolve, our models require a GSMF that implies an undetected population of massive galaxies (M⋆≥ 1011M⊙atz> 1). When theMBH–Mbulgeamplitude is allowed to evolve, we can model the GWB spectrum with all fiducial values and anMBH–Mbulgeamplitude that evolves asα(z) =α0(1 +z)1.04±0.5.more » « less
-
Abstract Radio pulsar signals are significantly perturbed by their propagation through the ionized interstellar medium. In addition to the frequency-dependent pulse times of arrival due to dispersion, pulse shapes are also distorted and shifted, having been scattered by the inhomogeneous interstellar plasma, affecting pulse arrival times. Understanding the degree to which scattering affects pulsar timing is important for gravitational-wave detection with pulsar timing arrays (PTAs), which depend on the reliability of pulsars as stable clocks with an uncertainty of ∼100 ns or less over ∼10 yr or more. Scattering can be described as a convolution of the intrinsic pulse shape with an impulse response function representing the effects of multipath propagation. In previous studies, the technique of cyclic spectroscopy has been applied to pulsar signals to deconvolve the effects of scattering from the original emitted signals, increasing the overall timing precision. We present an analysis of simulated data to test the quality of deconvolution using cyclic spectroscopy over a range of parameters characterizing interstellar scattering and pulsar signal-to-noise ratio (S/N). We show that cyclic spectroscopy is most effective for high S/N and/or highly scattered pulsars. We conclude that cyclic spectroscopy could play an important role in scattering correction to distant populations of highly scattered pulsars not currently included in PTAs. For future telescopes and for current instruments such as the Green Bank Telescope upgraded with the ultrawide bandwidth receiver, cyclic spectroscopy could potentially double the number of PTA-quality pulsars.more » « less
An official website of the United States government
